Assessment Schedule - 2007

Chemistry: Describe properties of particles and thermochemical principles (90780)

Evidence Statement

Question	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
ONE (a)	K 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 4s ¹ OR [Ar]4s ¹ (1s ² 2s ² p ⁶ 3s ² p ⁶ 4s ¹ format OK)	THREE correct		
	$P^{3-} 1s^2 2s^2 2p^6 3s^2 3p^6 $ OR [Ne] $3s^2 3p^6 $ OR [Ar]			
	Zn^{2+} 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ OR [Ne]3s ² 3p ⁶ 3d ¹⁰ OR [Ar]3d ¹⁰ (4s ⁰)			
(b)	Cu ²⁺ has partially filled d orbitals/subshell, Zn ²⁺ d orbitals/subshell are full. Absorption of: visible light / light of certain colours: excites e- (Colour is due to d e ⁻ being excited to higher energy d orbital on absorption of certain frequencies of visible light. The colour seen is the colour not absorbed.)	Either statement OR ONE ion accounted for	BOTH statements covered (Difference fully explained)	
(c)	$r(K^+) < r(K)$, K^+ has: 1 fewer shell/subshell/energy level $r(P^{3-}) > r(P) \qquad P^{3-} \text{ has: more valence } e^ \text{causing greater } e^ e^- \text{ repulsion}$	TWO radius comparisons correct OR ONE comparison correct and accounted for.	TWO radius comparisons correct AND full explanations	

(d)	TP – Electronegativity increases across a period TG – Electronegativity increases up a group From K to As: Pl – Electronegativity increases because P2 – nuclear charge increases (while shielding remains same) P3 – causing increasing attraction to the nucleus From N to As: Gl – Electronegativity decreases Because G2 – (whilst nuchear charge and shielding increase at the same rate, electron shells are added and so) radii increase G3 – causing decreasing attraction to the nucleus.	Statement of trends across period AND up or down group ie TP + TG / P1 + G1 OR Partial explanation of one trend. P1 + P2 OR G1 + G2	Statement of TRENDS across period AND up or down group ie TP + TG / P1 + G1 AND Explanation of one trend P2 + P3 / G2 + G3 OR Partial explanation of both trends ie element pairs, P2 + G2 TRENDS + P2 + P3 / G2 + G3 OR TRENDS + P2+G2	P1 + P2 + P3 AND G1 + G2 + G3
TWO (a)(i)	F F F F F F F F F F F F F F F F F F F	TWO correct structures OR ONE correct structure and its correct name	BOTH structures correct and their names correct	
(a)(ii)	T (distorted) Square Pyramid			

TWO (b) S	S1 AsF ₃ is trigonal pyramid Shape S2 Repulsion of four charge clouds around As: three bonding (or similar) S3 AsF ₅ is trigonal bipyramid Shape S4 Repulsion of 5 charge clouds around As: all are bonding (or similar)	TWO shapes stated OR ONE shape accounted for S1 + S3 or S1 + S2 or S3 + S4	TWO molecule shapes AND explanation in terms of repulsion of regions of electron density around the central atom. S1 + S2 + S3 + S4	
(b) P	P1F different electronegativity than As: AsF bond polar. P2AsF3 is Polar P3 (Trigonal pyramid) molecule asymmetrical; Polarities of AsF bonds reinforce OR Centres of +ve and -ve charge do not coincide OR Asymetric/uneven distribution of charge about central atom. P4AsF5 is Non - Polar P5(Trigonal bipyramid) molecule symmetrical; Polarities of AsF bonds cancel. OR centres of +ve and -ve charge coincide OR Symmetric/even distribution of charge about central atom.	BOTH polarities stated. OR Bond polarity attributed to different electronegativities. OR Account relates symmetry and bond polarity to molecule polarity. P1 or P2 + P4 or P2 + P3 or P4 + P5	Bond polarity attributed to different electronegativities. AND Account that relates symmetry and bond polarity to molecule polarity. P1 + P2 + P3 or P1 + P4 + P5	Comprehensive discussion. P1 + P2 + P3+P4 + P5

THREE (a)	 HF has hydrogen bonding, the strongest intermolecular force, so has the highest BP F₂ and HCl have (similar) temporary dipole (or similar) forces (as they have same number of electrons) However HCl also has, permanent dipole forces (or similar) giving it a higher BP than F₂. 	TWO of the following relationships identified HF → H bonding HCl → PD F ₂ → TD (and no incorrect relationships Incorrect: F ₂ : PD or HB etc HCl: HB or ionic or covalent).	Each molecule identified with an appropriate intermolecular force. (and no incorrect ones) AND ONE comparison made.	Comprehensive discussion relating relative BPs to intermolecular forces for all THREE molecules.
(b)(c)(i)	$ \frac{1}{2} H_2(g) + \frac{1}{2} Cl_2(g) \Rightarrow HCl(g) $ $ \Delta_r H^o = \sum BE \text{ (reactants)} - \sum BE \text{ (products)} $ $ = \frac{1}{2} BE (H_2) + \frac{1}{2} BE(Cl_2) - BE(HCl) $ $ = \frac{1}{2} 436 + \frac{1}{2} 242 - 431 $ $ = -92 \text{ kJ mol}^{-1} $	Equation correct (states required) OR Using incorrect equation, correct process with one minor error.	Equation Correct Correct process with one minor error. (units not required.) OR Using incorrect equation, correct process.	Equation correct –92 kJ mol ⁻¹ (Correct value of Δ _r H° with units.
(c)(ii)	Mr(HBr) = 80.9 $n(\text{HBr}) = \frac{m}{M} = \frac{50.0 \text{ g}}{80.9 \text{ g mol}^{-1}} = 0.618 \text{ mol}$ $heat(50.0 \text{ g HBr}) = n\Delta_f H^\circ \text{ (HBr)}$ $= 0.618 \text{ mol} \times 36.2 \text{ kJ mol}^{-1}$ = 22.4 kJ	0.617 – 0.618 mol Correct numerical value for heat.	22.3 to 22.4 kJ (OR –22.3 to –22.4 kJ) (Correct value with unit.)	

FOUR	Desired Equation: $C_2H_2(g) + 2\frac{1}{2}O_2(g) \rightarrow 2CO_2(g) + H_2O(l)$	Combustion eq. correct (states not required).	Combustion eq. correct (states not required).	-1300 kJ mol ⁻¹ (Correct value of
	$\Delta_{c}H^{o} = \sum \Delta_{f}H^{o} \text{ (products)} - \sum \Delta_{f}H^{o}\text{(reactants)}$ $= 2\Delta_{f}H^{o} \text{ (CO}_{2}) + \Delta_{f}H^{o} \text{ (H}_{2}O) - \Delta_{f}H^{o} \text{ (C}_{2}H_{2}) - \Delta_{f}H^{o}(O_{2})$	OR	AND	$\Delta_c H^\circ$ with units. 2 – 4 SF)
	$= 2 \times (-393) + (-285) - (+229) - 0$ = -1300 kJ mol ⁻¹	Error in combustion equation and follow on calculation has one	Applies Hess' Law with one minor error	,
	OR Desired Equation:	minor error.	AND OR no units.	
	$C_2H_2(g) + 2\frac{1}{2}O_2(g) \rightarrow 2CO_2(g) + H_2O(l) \Delta_cH^o = ?$		OR	
	I: $2C(s) + H_2(g) \rightarrow C_2H_2(g)$ $\Delta_r H^{\circ}(I) = 229 \text{ kJ mol}^{-1}$ II: $H_2(g) + -O_2(g) \rightarrow H_2O(I)$ $\Delta_r H^{\circ}(II) = -285 \text{ kJ mol}^{-1}$ III: $C(s) + O_2(g) \rightarrow CO_2(g)$ $\Delta_r H^{\circ}(III) = -393 \text{ kJ mol}^{-1}$		Error in combustion equation and correct follow on calculation.	
	-I: $C_2H_2(g) \rightarrow \frac{2C(s)}{2} + \frac{H_2(g)}{2} - \Delta_r H^{\circ}(I) = -229 \text{ kJ mol}^{-1}$		OR	
	II: $\frac{H_2(g)}{2} + \frac{1}{2} O_2(g) \rightarrow H_2O(1)$ $\Delta_r H^{\circ}(II) = -285 \text{ kJ mol}^{-1}$		Unit error in value.	
	2III: $\frac{2C(s) + 2O_2(g)}{2CO_2(g)}$ 2CO ₂ (g) $\frac{2\Delta_r H^{\circ} (III)}{2CO_2(g)}$ 2CO ₂ (g) + H ₂ O(l) $\Delta_c H^{\circ} = -1300 \text{ kJ mol}^{-1}$			

Judgement Statement

Achievement	Achievement with Merit	Achievement with Excellence
SIX opportunities answered at Achievement level (or higher).	EIGHT opportunities answered including at least FIVE at Merit level (or higher) and THREE at Achievement level (or higher).	NINE opportunities answered including at least THREE at Excellence level plus THREE at Merit level (or higher) and THREE at Achievement level (or higher).
Minimum of 6 × A	$Minimum 5 \times M + 3 \times A$	$Minimum 3 \times E + 3 \times M + 3 \times A$